The Built Environment, Food, and Physical Activity: Measurement Issues
Ann Forsyth, PhD
Department of City and Regional Planning
Cornell University
January 19, 2009

1. Built Environment and Behavior—Measuring Relevant issues

2. GIS Measures
 - Basic approach, data, variables, and geographies

3. Typical Dilemmas
 - Definitions, data quality, buffering changes

 - My studies 2003-2006 TCWS (RWJF, PI) and cluster of NIH-funded studies from 2006 (IDEA, EAT-III, ECHO, Co-PI/consultant)

1. Built Environment
Start of Recent Interest
- Popular interest in obesity
- Weight = food minus activity
- PA initial focus—early (2002) studies at county level found exercise did not vary by environment but weight did
- Explanations:
 - Research design
 - Food intake
 - Social and cultural factors
 - Non-leisure physical activity
- Travel research had found commute walking varies with environment
- Education not working
- Seemed possible to increase overall activity through utilitarian physical activity (PA)

1. Heart Disease 28.5% 12.4% (#1)
2. Cancer 22.8% 2.2% (#10, lung)
3. Stroke 6.7% 9.2% (#2)
4. Emphysema, chronic bronchitis 5.1% 4.5% (#5)
5. Accidents 6.7% 2.3% (#9, road)*
6. Diabetes 3.7%
7. Flu & pneumonia 2.7% 6.9% (#3)
8. Alzheimer/senility 2.4%
9. Kidney disease 1.7%
10. Septicemia/systemic infection 1.4%

Other top 10 in the world: HIV/AIDS 5.3% (#4), perinatal (#6), diarrhea (#7), tuberculosis (#8) All data for 2002

1. Built Environment
How Active are People Now?
- We have only recently had good large scale studies (e.g. until recently health studies asked about exercise, and travel studies about travel)
- People are active in different parts of their lives
 - Work
 - Exercise and leisure
 - Care/chores/errands
 - Commuting to work
- Still difficult to assess—all collection mechanisms have weaknesses (surveys, diaries, gadgets)

1. Built Environment
Theories about What Matters for Walking (and Biking)
- Transportation
- Urban/landscape design (physical planning, architecture, landscape architecture)
- Physical activity research
1. Built Environment

Interesting New Analysis Methods

Grid Looped Street lights

But data are not always available—good to have photos but....

1. Built Environment

The Food Side of the Energy Balance Equation

- Food has similar variety of theories on how environment affects eating
- Is proximity important?
 - Proximity to what (home, work, route), healthy or unhealthy?
 - Food deserts vs. ubiquitous food (name a retail place in Collegetown that does not sell any food)
 - Relative importance of economic, social, and psychological issues in consumption
 - Whether food access affects walking
- Very little known until recently about where people actually shop (vs. what they eat)
- Doesn’t build on rich theoretical/empirical base from spatial disciplines compare food + planning/geography groups with whole fields of transportation, planning, design

What GIS can help measure

* = Mediating factors

* = Within the domain of land use and transportation planners

Built Environment, Food, and Physical Activity:

Measurement Issues

1. Built Environment and Behavior—Measuring Relevant issues

2. GIS Measures
- Basic approach, data, variables, and geographies

3. Typical Dilemmas
- Definitions, data quality, buffering changes

4. Analysis
2. Measures

GIS

- A Geographic Information System (GIS) is a system of software and data that allows mapping and analysis
- ESRI is the main vendor in the US (ArcGIS suite including ArcMap, ArcCatalog, Spatial Analyst, ArcInfo, Network Analyst)
- Menu and wizard-based rather than scripted—problems of replication
- Rapid increase in available software and data over the past 10 years—though little collected specifically for research
- Distinctive cultures—remote sensing, planning/urban studies, environmental, social analysis

2. Measures

How to Think About Measures

Measurement of food/activity variables associated with the built environment occurs on several levels:
- Behavior of interest e.g. healthy food intake
- Dimension of interest e.g. restaurant meals (quality)
- Measurement of variable (formula) associated with that dimension e.g. all restaurants, all limited service restaurants, major chains (different data sources limit kinds of definitions)
- Geography of that measurement e.g. 400 meter street network distance/buffer, distance to the nearest something, home to school route
- Data: commercial lists, licensing, land use/parcels, fieldwork

There can be easily 50-100 variable/geography combinations for one dimension or topic e.g. five different restaurant measures at up to 20 different geographies

2. Measures

Data Sources for Food and PA

- Fieldwork (RWJF has sponsored a number of tools)
- Land Use and Parcel Data (including interpretation of aerial photographs)
- Food Licensing Data
- Commercial Business Data
- Business Taxation data
- Online Street-level Photographs—not used yet (example from Google Street View [launched May 2007] in Valencia [added October 2008])

All can be used in GIS
2. Measures

Data Sources for Food and PA

- Fieldwork
- Land Use and Parcel Data (including interpretation of aerial photographs)
- Food Licensing Data
- Commercial Business Data
- Business Taxation data
- Online Street-level Photographs

- All can be used in GIS—all have weaknesses for locating food sources and measuring quality

2. Measures

Example of TREC-IDEA Study

- Identifying Determinants of Eating and Activity in Adolescents (IDEA), Leslie Lytle PI
- Goal: Examine the etiology of adolescent obesity and risk of future cancer using a social-ecological approach and considering possible risk and protective factors at the individual, family, home, school and neighborhood levels
- Study Design
 - Enroll an existing cohort of youth ages 14-18 plus at least one biological parent (n = 323 at baseline)
 - Collect data on the cohort at three time points over a period of 24 months (baseline; 12 months; 24 months)
 - Primary outcome: Predictors of change in BMI trajectories/weight status categories over time

2. Measures

TREC-IDEA Study

- Measurements planned:
 - Child/Adolescent level: biological markers, body comp, diet, activity, psychosocial
 - Parent: body comp, diet, activity, psychosocial
 - Home: Home food inventory, physical activity and media inventory, meal screener
 - School: Availability of foods/activity; food and activity policies
 - Neighborhood: GIS- activity and eating opportunities around homes and schools
2. Measures

BE Variables In TREC/IDEA (45 + census)

- Food related variables (distance to + density of)
 - Restaurants (all, fast food, fast food sub-types, non-fast food [8 measures])
 - Food stores (all, groceries, large supermarkets, convenience stores, nearest type, farmers market, alcohol)
- Physical activity related variables include
 - Density measures
 - Street pattern/connectivity
 - Pedestrian infrastructure
 - Mixed use/destinations including distances to recreation facilities (parks, rec. centers, trails etc)
- Traffic
- Census variables
- Also comparing survey (perceived/behavior) vs. measured environmental features

TREC Geographies

- Home straight line/network buffers at 400, 800, 1600, and 3,000 meters (density)
- Home straight line/network distances to nearest feature
- School straight line/network buffers
- School straight line/network distances to nearest feature
- Home to school network buffer (100m either side)
- Each person has up to 21 separate geographies for each variable
- Manage the Modifiable Areal Unit Problem (zoning + scale)

3. Dilemmas: Definitions

How Food Stores and Restaurants are Defined in the Literature to Date

<table>
<thead>
<tr>
<th>Data Source (down)</th>
<th>Researcher defined categories</th>
<th>Land use type</th>
<th>Chain names</th>
<th>Industrial code (e.g. NAICS)</th>
<th>Proprietary/ local codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fieldwork</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>May not be specific</td>
<td></td>
</tr>
<tr>
<td>Land use and parcel data</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Food licensing data</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Commercial business data</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Potential to use online street level photographs e.g. Google StreetView, Tax data

Example Land Use Data Categories Metro-Wide—Local Data Has More Detail

- 100 = Agricultural
- 111 = Farmstead
- 112 = Seasonal/Vacation
- 113 = Single Family Detached
- 114 = Single Family Attached
- 115 = Multifamily
- 116 = Manufactured Housing
- 120 = Retail and Other Commercial
- 130 = Office
- 141 = Mixed Use Residential
- 142 = Mixed Use Industrial
- 143 = Mixed Use Commercial and Other

- 151 = Industrial and Utility
- 153 = Extractive
- 160 = Institutional
- 170 = Park, Recreational, or Preserve
- 173 = Golf Course
- 201 = Major Highway
- 202 = Railway
- 203 = Airport
- 210 = Undeveloped
- 220 = Water

Generalized Land Use Categories: Twin Cities Metropolitan Area, 2005

Source: Metropolitan Council 2005
3. Dilemmas: Definitions

Example Chain Names

- Chain names
 - Problem of choosing a list
 - Wikipedia has a long list of over 150 fast food names, also extensive list of supermarkets; most scholars have much shorter lists

A. NAICS codes

- Finding fast food in commercial data sets?
 - Search using North American Industrial Classification System/Standard Industrial Classification System codes (NAICS/SIC codes)
 - 722110 Full-Service Restaurants
 - 722211 Limited-Service Restaurants
 - 722212 Cafeterias
 - 722213 Snack and Nonalcoholic Beverage Bars
 - Etc.
 - Problem of mis-classification (e.g. in D&B Culver's and Famous Dave's are considered full-service restaurants because employees bring food to your table, even though you order at the counter)

http://www.census.gov/epcd/naics02/naicod02.htm

(Mis) Classification

<table>
<thead>
<tr>
<th>Comparison of NAICS Code Distribution for 50 Zip Codes</th>
<th>Business Analyst</th>
<th>Dun and Brad.</th>
<th>Diff %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAICS Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>445 Food and Beverage Stores</td>
<td>452</td>
<td>394</td>
<td>-13%</td>
</tr>
<tr>
<td>4451 Grocery Stores</td>
<td>242</td>
<td>218</td>
<td>-10%</td>
</tr>
<tr>
<td>44511 Supermarkets and Other Grocery (except Convenience) Stores</td>
<td>117</td>
<td>70</td>
<td>-40%</td>
</tr>
<tr>
<td>4452 Specialty Food Stores</td>
<td>119</td>
<td>82</td>
<td>-31%</td>
</tr>
<tr>
<td>44521 Meat Markets</td>
<td>17</td>
<td>16</td>
<td>6%</td>
</tr>
<tr>
<td>44522 Fish and Seafood Markets</td>
<td>2</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>44523 Fruit and Vegetable Markets</td>
<td>12</td>
<td>2</td>
<td>-83%</td>
</tr>
<tr>
<td>44529 Other Specialty Food Stores</td>
<td>88</td>
<td>59</td>
<td>-33%</td>
</tr>
<tr>
<td>445291 Baked Goods Stores</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>445292 Confectionery and Nut Stores</td>
<td>12</td>
<td>13</td>
<td>8%</td>
</tr>
<tr>
<td>445299 All Other Spec. Food Stores</td>
<td>76</td>
<td>28</td>
<td>-66%</td>
</tr>
</tbody>
</table>

3. Dilemmas: Definitions

(Mis)Classification Part 2

<table>
<thead>
<tr>
<th>Comparison of NAICS Code Distribution for 50 Zip Codes</th>
<th>Business Analyst</th>
<th>Dun and Brad.</th>
<th>Diff %</th>
</tr>
</thead>
<tbody>
<tr>
<td>722 Food Services and Drinking Places</td>
<td>1004</td>
<td>950</td>
<td>-5%</td>
</tr>
<tr>
<td>7221 Full-Service Restaurants</td>
<td>34</td>
<td>432</td>
<td>117%</td>
</tr>
<tr>
<td>7222 Limited-Service Eating Places</td>
<td>829</td>
<td>371</td>
<td>-55%</td>
</tr>
<tr>
<td>722212 Cafeterias</td>
<td>5</td>
<td>8</td>
<td>60%</td>
</tr>
<tr>
<td>722213 Snack and Nonalcoholic Beverage Bars</td>
<td>75</td>
<td>1</td>
<td>-99%</td>
</tr>
<tr>
<td>7224 Drinking Places (Alcoholic Beverages)</td>
<td>91</td>
<td>103</td>
<td>13%</td>
</tr>
</tbody>
</table>

Comparing commercial numbers, correlation is high \(r = 0.96 \) but lower comparing commercial data to licensing numbers \(r = 0.7 \)

3. Dilemmas: Data Quality

Generic Data Problems

- Consistency across jurisdictions
- Purpose—original collection
- Geographies of data collection
- Resolution/scale
- Accuracy
- Completeness
- Reliability information
- Time of collection
- Errors
- Cost—cleaning, coding

<table>
<thead>
<tr>
<th>Data Quality Issue</th>
<th>Fieldwork</th>
<th>Land Use + Parcel Data</th>
<th>Business Licensing</th>
<th>Commercial Listing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency across jurisdictions</td>
<td>Flexible</td>
<td>Limited</td>
<td>Limited</td>
<td>A strength of many of these data</td>
</tr>
<tr>
<td>Purpose, original collection</td>
<td>Flexible</td>
<td>Property taxation, urban planning</td>
<td>Health regulation</td>
<td>Includes phone books, mailing, credit reporting</td>
</tr>
<tr>
<td>Geographies of data collection</td>
<td>Flexible</td>
<td>Parcel</td>
<td>Business</td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td>Depends</td>
<td>Updated but not checked</td>
<td>Updated but not checked</td>
<td>Updated but not checked</td>
</tr>
<tr>
<td>Time of collection</td>
<td>Flexible</td>
<td>Varies</td>
<td>Typically updated annually</td>
<td>Updated regularly; some in time series</td>
</tr>
<tr>
<td>Cost—cleaning, coding</td>
<td>Expensive</td>
<td>Public data</td>
<td>Public data; may require significant formatting</td>
<td>Can be very expensive</td>
</tr>
</tbody>
</table>
3. Dilemmas: Data Quality
Accuracy and Completeness

• Address matching at first try and after extensive (weeks of) address cleaning and searching for Dun and Bradstreet data
• Business Analyst/Info USA that claims 90% matched to street address
• No one reports what they did

<table>
<thead>
<tr>
<th>Dataset (Twin Cities)</th>
<th>Number of Businesses</th>
<th>Unmatched First Try</th>
<th>Unmatched After Fixes (6 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eating and Drinking</td>
<td>4865</td>
<td>713 (16%)</td>
<td>97 (2%)</td>
</tr>
<tr>
<td>Food Stores</td>
<td>1806</td>
<td>286 (16%)</td>
<td>39 (2%)</td>
</tr>
<tr>
<td>General Department Stores</td>
<td>394</td>
<td>87 (22%)</td>
<td>22 (6%)</td>
</tr>
<tr>
<td>Liquor Stores</td>
<td>443</td>
<td>91 (21%)</td>
<td>2 (0%)</td>
</tr>
</tbody>
</table>

3. Dilemmas: Buffers
Network Buffer Change

• Network buffers indicate the area reachable within a certain street distance
• However, the formula inside ArcGIS changed with version 9.1 and a new Network Analyst
• The old style (ArcView 3.3) “joined the dots” of points x meters along the street network
• The new styles do not
• Can be 500%+ different in area

Take Home

• GIS software and databases are primarily developed for practice so don’t fit research questions
• Many researchers are unaware of weaknesses
• Most measurement problems can be solved with more research $\$
• But there’s still the issue of the built environment having small effects….and with so many measures some associations will be found by chance

There’s More than PA and Foods

• Designforhealth.net topics
 - Accessibility
 - Air quality
 - Climate change
 - Environment + housing quality
 - Food
 - Healthcare access
 - Mental health
 - Noise
 - Physical activity
 - Safety
 - Social capital
 - Water quality
 - Also special populations, planning process, finance
Built Environment, Food, and Physical Activity: Measurement Issues

1. Built Environment and Behavior—Measuring Relevant issues
2. GIS Measures
 - Basic approach, data, variables, and geographies
3. Typical Dilemmas
 - Definitions, data quality, buffering changes
4. Twin Cities Walking Study